Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.365
Filtrar
1.
Clin Transl Sci ; 17(3): e13768, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38465776

RESUMO

Plasma 4ß-hydroxycholesterol (OHC) has drawn attention as an endogenous substrate indicating CYP3A activity. Plasma 4ß-OHC is produced by hydroxylation by CYP3A4 and CYP3A5 and by cholesterol autoxidation. Plasma 4α-OHC is produced by cholesterol autoxidation and not affected by CYP3A activity. This study aimed to evaluate the usefulness of plasma 4ß-OHC concentration minus plasma 4α-OHC concentration (4ß-OHC-4α-OHC) compared with plasma 4ß-OHC concentration and 4ß-OHC/total cholesterol (TC) ratio in cross-sectional evaluation of CYP3A activity. Four hundred sixteen general adults were divided into 191 CYP3A5*1 carriers and 225 non-carriers. Twenty-six patients with chronic kidney disease (CKD) with CYP3A5*1 allele were divided into 14 with CKD stage 3 and 12 with stage 4-5D. Area under the receiver operating characteristic curve (AUC) for the three indices were evaluated for predicting presence or absence of CYP3A5*1 allele in general adults, and for predicting CKD stage 3 or stage 4-5D in patients with CKD. There was no significant difference between AUC of 4ß-OHC-4α-OHC and AUC of plasma 4ß-OHC concentration in general adults and in patients with CKD. AUC of 4ß-OHC-4α-OHC was significantly smaller than that of 4ß-OHC/TC ratio in general adults (p = 0.025), but the two indices did not differ in patients with CKD. In conclusion, in the present cross-sectional evaluation of CYP3A activity in general adults and in patients with CKD with CYP3A5*1 allele, the usefulness of 4ß-OHC-4α-OHC was not different from plasma 4ß-OHC concentration or 4ß-OHC/TC ratio. However, because of the limitations in study design and subject selection of this research, these findings require verification in further studies.


Assuntos
Hidroxicolesteróis , Insuficiência Renal Crônica , Adulto , Humanos , Citocromo P-450 CYP3A/genética , Estudos Transversais , Colesterol , Biomarcadores
2.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540675

RESUMO

Brain cholesterol metabolic products include neurosteroids and oxysterols, which play important roles in cellular physiology. In neurons, the cholesterol oxidation product, 24S-hydroxycholesterol (24S-HC), is a regulator of signaling and transcription. Here, we examined the behavioral effects of 24S-HC loss, using global and cell-selective genetic deletion of the synthetic enzyme CYP46A1. Mice that are globally deficient in CYP46A1 exhibited hypoactivity at young ages and unexpected increases in conditioned fear memory. Despite strong reductions in hippocampal 24S-HC in mice with selective loss of CYP46A1 in VGLUT1-positive cells, behavioral effects were not recapitulated in these conditional knockout mice. Global knockout produced strong, developmentally dependent transcriptional effects on select cholesterol metabolism genes. These included paradoxical changes in Liver X Receptor targets. Again, conditional knockout was insufficient to recapitulate most changes. Overall, our results highlight the complex effects of 24S-HC in an in vivo setting that are not fully predicted by known mechanisms. The results also demonstrate that the complete inhibition of enzymatic activity may be needed for a detectable, therapeutically relevant impact on gene expression and behavior.


Assuntos
Colesterol , Hidroxicolesteróis , Camundongos , Animais , Colesterol 24-Hidroxilase/metabolismo , Hidroxicolesteróis/metabolismo , Colesterol/metabolismo , Hipocampo/metabolismo
3.
J Am Heart Assoc ; 13(5): e031824, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38390795

RESUMO

BACKGROUND: Regardless of progress in treatment of coronary artery disease (CAD), there is still a significant residual risk of death in patients with CAD, highlighting the need for additional risk stratification markers. Our previous study provided evidence for a novel blood pressure-regulating mechanism involving 4ß-hydroxycholesterol (4ßHC), an agonist for liver X receptors, as a hypotensive factor. The aim was to determine the role of 4ßHC as a prognostic factor in CAD. METHODS AND RESULTS: The ARTEMIS (Innovation to Reduce Cardiovascular Complications of Diabetes at the Intersection) cohort consists of 1946 patients with CAD. Men and women were analyzed separately in quartiles according to plasma 4ßHC. Basic characteristics, medications, ECG, and echocardiography parameters as well as mortality rate were analyzed. At baseline, subjects with a beneficial cardiovascular profile, as assessed with traditional markers such as body mass index, exercise capacity, prevalence of diabetes, and use of antihypertensives, had the highest plasma 4ßHC concentrations. However, in men, high plasma 4ßHC was associated with all-cause death, cardiac death, and especially sudden cardiac death (SCD) in a median follow-up of 8.8 years. Univariate and comprehensively adjusted hazard ratios for SCD in the highest quartile were 3.76 (95% CI, 1.6-8.7; P=0.002) and 4.18 (95% CI, 1.5-11.4; P=0.005), respectively. In contrast, the association of cardiac death and SCD in women showed the lowest risk in the highest 4ßHC quartile. CONCLUSIONS: High plasma 4ßHC concentration was associated with death and especially SCD in men, while an inverse association was detected in women. Our results suggest 4ßHC as a novel sex-specific risk marker of cardiac death and especially SCD in chronic CAD. REGISTRATION INFORMATION: clinicaltrials.gov. Identifier NCT01426685.


Assuntos
Doença da Artéria Coronariana , Hidroxicolesteróis , Feminino , Humanos , Masculino , Morte , Morte Súbita Cardíaca/epidemiologia , Receptores X do Fígado , Prognóstico , Fatores de Risco
4.
Arch Toxicol ; 98(3): 849-863, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38180513

RESUMO

Trophoblast cell syncytialization is essential for placental and fetal development. Abnormal trophoblast cell fusion leads to pregnancy pathologies, such as preeclampsia (PE), intrauterine growth restriction (IUGR), and miscarriage. 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in human peripheral blood synthesized by sterol 27-hydroxylase (CYP27A1) and is considered a critical mediator between hypercholesterolemia and a variety of related disorders. Gestational hypercholesterolemia was associated with spontaneous preterm delivery and low birth weight (LBW) in term infants, yet the mechanism is unclear. In this study, two trophoblast cell models and CD-1 mice were used to evaluate the effects of 27-OHC on trophoblast fusion during placenta development. Two different kinds of trophoblast cells received a dosage of 2.5, 5, or 10 uM 27-OHC. Three groups of pregnant mice were randomly assigned: control, full treatment (E0.5-E17.5), or late treatment (E13.5-E17.5). All mice received daily intraperitoneal injections of saline (control group) and 27-OHC (treatment group; 5.5 mg/kg). In vitro experiments, we found that 27-OHC inhibited trophoblast cell fusion in primary human trophoblasts (PHT) and forskolin (FSK)-induced BeWo cells. 27-OHC up-regulated the expression of the PI3K/AKT/mTOR signaling pathway-related proteins. Moreover, the PI3K inhibitor LY294002 rescued the inhibitory effect of 27-OHC. Inhibition of trophoblast cell fusion by 27-OHC was also observed in CD-1 mice. Furthermore, fetal weight and placental efficiency decreased and fetal blood vessel development was inhibited in pregnant mice treated with 27-OHC. This study was the first to prove that 27-OHC inhibits trophoblast cell fusion by Activating PI3K/AKT/mTOR signaling pathway. This study reveals a novel mechanism by which dyslipidemia during pregnancy results in adverse pregnancy outcomes.


Assuntos
Hidroxicolesteróis , Hipercolesterolemia , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Trofoblastos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
5.
Pflugers Arch ; 476(3): 407-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253680

RESUMO

25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac ß-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to ß-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the ß-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to ß1-AR (but not ß2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the ß1-AR-mediated responses was prevented by selective ß3-AR antagonists as well as inhibitors of Gi protein, Gßγ, G protein-coupled receptor kinase 2/3, or ß-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to ß-AR activation. Thus, 25HC can suppress the ß1-AR-dependent effects via engaging ß3-AR, Gi protein, Gßγ, G protein-coupled receptor kinase, and ß-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial ß-adrenergic signaling.


Assuntos
Adrenérgicos , Átrios do Coração , Hidroxicolesteróis , Camundongos , Animais , Adrenérgicos/metabolismo , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia
6.
Inflamm Res ; 73(2): 289-304, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184500

RESUMO

OBJECTIVE: Intestinal fibrosis, a common and serious complication of inflammatory bowel disease (IBD), results from chronic inflammation. A high-cholesterol diet may be a risk factor for IBD and 27-hydroxylcholesterol (27HC) is the main human cholesterol metabolite. This study investigated whether 27HC can induce intestinal fibrosis. METHODS: The effects of cholesterol and 27HC on intestinal fibrosis were assessed in zebrafish and human intestinal epithelial Caco-2 cells. RESULTS: Cholesterol and 27HC induced intestinal inflammation and collagen deposition, inhibited E-cadherin (E-ca) expression in the intestinal epithelium, and promoted nuclear translocation of ß-catenin in zebrafish. Cholesterol and 27HC up-regulated expression of COL-1, α-SMA, CTGF, TIMP1, N-cadherin, vimentin, glycogen synthesis kinase-3ß (GSK-3ß) and ß-catenin, but inhibited E-ca, in Caco-2 cells. The expression of these proteins was inhibited by CYP27A1 knockdown and ß-catenin knockdown. 27HC-induced nuclear translocation of ß-catenin occurs in Caco-2 cells. p38, ERK, and AKT activate ß-catenin and thereby participate in 27HC-induced epithelia-mesenchymal transition (EMT) and fibrosis. 27HC-increased oxidative stress and the fibrosis and EMT markers, the nuclear translocation of ß-catenin, and the up-regulation of p-cell kinase proteins promoted by 27HC were inhibited by N-acetyl-L-cysteine (NAC). Folic acid (FA), resveratrol (RES), and NAC all ameliorated the 27HC-induced effects in Caco-2 cells and zebrafish. CONCLUSION: A high-cholesterol diet caused intestinal fibrosis in zebrafish, mediated by a major cholesterol metabolite, 27HC. 27HC increased oxidative stress and activated p38, ERK, AKT, and ß-catenin, leading to EMT of epithelial cells and intestinal fibrosis. FA and RES both ameliorated intestinal fibrosis by restraining 27HC-induced ß-catenin activation.


Assuntos
Glicogênio Sintase Quinase 3 beta , Doenças Inflamatórias Intestinais , Estresse Oxidativo , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Células CACO-2 , Transição Epitelial-Mesenquimal , Fibrose , Glicogênio Sintase Quinase 3 beta/metabolismo , Hidroxicolesteróis/farmacologia , Inflamação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
7.
J Lipid Res ; 65(1): 100486, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104944

RESUMO

Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.


Assuntos
Hidroxicolesteróis , Oxisteróis , Animais , Hidroxicolesteróis/metabolismo , Colesterol/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo , Mamíferos/metabolismo
8.
Front Immunol ; 14: 1268104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781400

RESUMO

Cholesterol, as an important component in mammalian cells, is efficient for viral entry, replication, and assembly. Oxysterols especially hydroxylated cholesterols are recognized as novel regulators of the innate immune response. The antiviral ability of 25HC (25-Hydroxycholesterol) is uncovered due to its role as a metabolic product of the interferon-stimulated gene CH25H (cholesterol-25-hydroxylase). With the advancement of research, the biological functions of 25HC and its structural functions have been interpreted gradually. Furthermore, the underlying mechanisms of antiviral effect of 25HC are not only limited to interferon regulation. Taken up by the special biosynthetic ways and structure, 25HC contributes to modulate not only the cholesterol metabolism but also autophagy and inflammation by regulating signaling pathways. The outcome of modulation by 25HC seems to be largely dependent on the cell types, viruses and context of cell microenvironments. In this paper, we review the recent proceedings on the regulatory effect of 25HC on interferon-independent signaling pathways related to its antiviral capacity and its putative underlying mechanisms.


Assuntos
Antivirais , Replicação Viral , Animais , Antivirais/farmacologia , Interferons/farmacologia , Hidroxicolesteróis/metabolismo , Mamíferos/metabolismo
9.
J Steroid Biochem Mol Biol ; 235: 106408, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806531

RESUMO

Accurate quantification of 24(S)-hydroxycholesterol and 27-hydroxycholesterol holds substantial biological significance due to their involvement in pivotal cellular processes, encompassing cholesterol homeostasis, inflammatory responses, neuronal signaling, and their potential as disease biomarkers. The plasma determination of these oxysterols is challenging considering their low concentrations and similarities in terms of empirical formulae, molecular structure, and physicochemical properties across all human endogenous plasma oxysterols. To overcome these sensitivity and specificity issues, we developed and validated a quantification method using liquid chromatography coupled to a tandem mass spectrometry instrument. Validation studies were designed inspired by Clinical and Laboratory Standards Institute (CLSI) C62-A Guidelines. The linearity ranged between 20 and 300 nM for both oxysterols with limits of quantification at 20 nM and 30 nM for 24(S)-OHC and 27-OHC, respectively. Inter-day precision coefficient variations (CV) were lower than 10% for both oxysterols. An optimal separation of 25-OHC was obtained from 24(S)-OHC and 27-OHC with a resolution (Rs) > 1.25. The determination and validation of ion ratios for 24(S)-OHC and 27-OHC enabled another quality check in identifying interferents that could impact the quantification. Our developed and validated LC-MS/MS method allows consistent and reliable quantification of human plasmatic 24(S)-OHC and 27-OHC that is warranted in fundamental and clinical research projects.


Assuntos
Hidroxicolesteróis , Oxisteróis , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
12.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631994

RESUMO

Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens, resulting in huge economic losses in the poultry industry. It has been suggested that MDV suppresses the induction of type I interferons and thus escapes immune control. Cholesterol 25-hydroxylase (CH25H), a gene that encodes an enzyme that catalyses cholesterol to 25-hydroxycholesterol (25-HC), is an interferon-stimulating gene (ISG) known to exert antiviral activities. Other oxysterols, such as 27-hydroxycholesterols (27-HC), have also been shown to exert antiviral activities, and 27-HC is synthesised by the catalysis of cholesterol via the cytochrome P450 enzyme oxidase sterol 27-hydroxylase A1 (CYP27A1). At 24 h post infection (hpi), MDV stimulated a type I interferon (IFN-α) response, which was significantly reduced at 48 and 72 hpi, as detected using the luciferase assay for chicken type I IFNs. Then, using RT-PCR, we demonstrated that chicken type I IFN (IFN-α) upregulates chicken CH25H and CYP27A1 genes in chicken embryo fibroblast (CEF) cells. In parallel, our results demonstrate a moderate and transient upregulation of CH25H at 48 hpi and CYP27A1 at 72hpi in MDV-infected CEF cells. A significant reduction in MDV titer and plaque sizes was observed in CEFs treated with 25-HC or 27-HC in vitro, as demonstrated using a standard plaque assay for MDV. Taken together, our results suggest that 25-HC and 27-HC may be useful antiviral agents to control MDV replication and spread.


Assuntos
Interferon Tipo I , Doença de Marek , Animais , Embrião de Galinha , Hidroxicolesteróis/farmacologia , Galinhas , Interferon-alfa/farmacologia , Antivirais/farmacologia , Replicação Viral
13.
J Steroid Biochem Mol Biol ; 234: 106387, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648096

RESUMO

The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3ß-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.


Assuntos
Oxisteróis , Esteroide Hidroxilases , Animais , Camundongos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Hidroxicolesteróis/metabolismo , Oxisteróis/metabolismo , Cognição , Modelos Animais de Doenças , Camundongos Knockout , Glucose
14.
Mov Disord ; 38(11): 2005-2018, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37593929

RESUMO

BACKGROUND: The accumulation and aggregation of α-synuclein (α-Syn) are characteristic of Parkinson's disease (PD). Epidemiological evidence indicates that hyperlipidemia is associated with an increased risk of PD. The levels of 27-hydroxycholesterol (27-OHC), a cholesterol oxidation derivative, are increased in the brain and cerebrospinal fluid of patients with PD. However, whether 27-OHC plays a role in α-Syn aggregation and propagation remains elusive. OBJECTIVE: The aim of this study was to determine whether 27-OHC regulates α-Syn aggregation and propagation. METHODS: Purified recombinant α-Syn, neuronal cultures, and α-Syn fibril-injected mouse model of PD were treated with 27-OHC. In addition, CYP27A1 knockout mice were used to investigate the effect of lowering 27-OHC on α-Syn pathology in vivo. RESULTS: 27-OHC accelerates the aggregation of α-Syn and enhances the seeding activity of α-Syn fibrils. Furthermore, the 27-OHC-modified α-Syn fibrils localize to the mitochondria and induce mitochondrial dysfunction and neurotoxicity. Injection of 27-OHC-modified α-Syn fibrils induces enhanced spread of α-Syn pathology and dopaminergic neurodegeneration compared with pure α-Syn fibrils. Similarly, subcutaneous administration of 27-OHC facilitates the seeding of α-Syn pathology. Genetic deletion of cytochrome P450 27A1 (CYP27A1), the enzyme that converts cholesterol to 27-OHC, ameliorates the spread of pathologic α-Syn, degeneration of the nigrostriatal dopaminergic pathway, and motor impairments. These results indicate that the cholesterol metabolite 27-OHC plays an important role in the pathogenesis of PD. CONCLUSIONS: 27-OHC promotes the aggregation and spread of α-Syn. Strategies aimed at inhibiting the CYP27A1-27-OHC axis may hold promise as a disease-modifying therapy to halt the progression of α-Syn pathology in PD. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Hidroxicolesteróis/farmacologia , Colesterol
15.
J Cell Mol Med ; 27(18): 2744-2755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37614064

RESUMO

27-hydroxycholesterol (27-HC) is a cholesterol metabolite and the first discovered endogenous selective estrogen receptor modulator (SERM) that has been shown to have proliferative and metastatic activity in breast cancer. However, whether 27-HC metabolite modulates the epigenetic signatures in breast cancer and its progression remains unclear. The current study, reports that 27-HC represses the expression of euchromatic histone lysine methyltransferase G9a, further reducing di-methylation at H3K9 in a subset of genes. We also observed reduced occupancy of ERα at the G9a promoter, indicating that 27-HC negatively regulates the ERα occupancy on the G9a promoter and functions as a transcriptional repressor. Further, ChIP-sequencing for the H3K9me2 mark has demonstrated that 27-HC treatment reduces the H3K9me2 mark on subset of genes linked to cancer progression, proliferation, and metastasis. We observed upregulation of these genes following 27-HC treatment which further confirms the loss of methylation at these genes. Immunohistochemical analysis with breast cancer patient tissues indicated a positive correlation between G9a expression and CYP7B1, a key enzyme of 27-HC catabolism. Overall, this study reports that 27-HC represses G9a expression via ERα and reduces the levels of H3K9me2 on a subset of genes, including the genes that aid in breast tumorigenesis and invasion further, increasing its expression in the breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Hidroxicolesteróis/farmacologia , Receptores de Estrogênio
16.
J Steroid Biochem Mol Biol ; 234: 106376, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604319

RESUMO

Oxysterols are oxidized derivatives of cholesterol that are formed by enzymatic processes or through the action of reactive oxygen species. Several of these bioactive lipids have been shown to be affected and/or play a role in inflammatory processes. 4ß-hydroxycholesterol is one of the major oxysterols in mice and humans and its levels are affected by inflammatory diseases. However, apart from its long half-life, little is known about its catabolism. By incubating 4ß-hydroxycholesterol with mouse mitochondria-enriched liver fractions, as well as 25-hydroxycholesterol and 27-hydroxycholesterol with recombinant CYP3A4, we identified 4ß,25-dihydroxycholesterol and 4ß,27-dihydroxycholesterol as 4ß-hydroxycholesterol metabolites. Supporting the biological relevance of this metabolism, we detected both metabolites after incubation of J774, primary mouse peritoneal macrophages and PMA-differentiated THP-1 cells with 4ß-hydroxycholesterol. Across our experiments, the incubation of cells with lipopolysaccharides differentially affected the levels of the 25- and 27-hydroxylated metabolites of 4ß-hydroxycholesterol. Finally, 4ß,27-dihydroxycholesterol was also detected in mice liver and plasma after intraperitoneal administration of 4ß-hydroxycholesterol. To our knowledge, this is the first report of the in vitro and in vivo detection and quantification of 4ß-hydroxycholesterol metabolites.


Assuntos
Hidroxicolesteróis , Oxisteróis , Humanos , Animais , Camundongos , Hidroxicolesteróis/metabolismo , Colesterol , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Meia-Vida
17.
Am J Respir Cell Mol Biol ; 69(6): 638-648, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37578898

RESUMO

Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-Hydroxycholesterol (25HC), a product of the activity of cholesterol-25-hydroxylase (CH25H) on cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, 25HC can also amplify inflammation and be converted by CYP7B1 (cytochrome P450 family 7 subfamily B member 1) to 7α,25-dihydroxycholesterol, a lipid with chemoattractant activity, via the G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2)/GPR183 (G protein-coupled receptor 183). Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that although 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 (angiotensin-converting enzyme 2) mouse model in vivo. Treatment with 25HC also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma proinflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points but no change in weight loss. Consistent with these findings, although Ch25h and 25HC were upregulated in the lungs of SARS-CoV-2-infected wild-type mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the ß variant were similar to those in control animals. Taken together, endogenous 25HCs do not significantly regulate early SARS-CoV-2 replication or pathogenesis, and supplemental 25HC may have proinjury rather than therapeutic effects in SARS-CoV-2 pneumonia.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Humanos , Animais , Camundongos , SARS-CoV-2 , Herpesvirus Humano 4 , Hidroxicolesteróis/farmacologia , Colesterol , Receptores Acoplados a Proteínas G , Antivirais/farmacologia , Citocinas , Redução de Peso
18.
Breast Cancer Res ; 25(1): 95, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580793

RESUMO

BACKGROUND: Laboratory studies have indicated that a cholesterol metabolite and selective estrogen receptor modulator, 27-hydroxycholesterol (27HC), may be important in breast cancer etiology and explain associations between obesity and postmenopausal breast cancer risk. Epidemiologic evidence for 27HC in breast cancer risk is limited, particularly in multiethnic populations. METHODS: In a nested case-control study of 1470 breast cancer cases and 1470 matched controls within the Multiethnic Cohort Study, we examined associations of pre-diagnostic circulating 27HC with breast cancer risk among African American, Japanese American, Native Hawaiian, Latino, and non-Latino White postmenopausal females. We used multivariable logistic regression adjusted for age, education, parity, body mass index, and smoking status. Stratified analyses were conducted across racial and ethnic groups, hormone receptor (HR) status, and use of lipid-lowering drugs. We assessed interactions of 27HC with steroid hormones. RESULTS: 27HC levels were inversely related to breast cancer risk (odds ratio [OR] 0.80; 95% confidence interval [CI] 0.58, 1.12), but the association was not statistically significant in the full model. Directions of associations differed by racial and ethnic group. Results suggested an inverse association with HR-negative breast cancer (OR 0.46; 95% CI 0.20, 1.06). 27HC interacted with testosterone, but not estrone, on risk of breast cancer; 27HC was only inversely associated with risk among those with the highest levels of testosterone (OR 0.46; 95% CI 0.24, 0.86). CONCLUSION: This is the first US study to examine circulating 27HC and breast cancer risk and reports a weak inverse association that varies across racial and ethnic groups and testosterone level.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Estudos de Coortes , Estudos de Casos e Controles , Fatores de Risco , Hidroxicolesteróis , Testosterona
19.
Pathol Res Pract ; 248: 154737, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37542860

RESUMO

The role of 27-hydroxycholesterol (27-OHC) in autoimmune diseases has become a subject of intense research in recent years. This oxysterol, derived from cholesterol, has been identified as a significant player in modulating immune responses and inflammation. Its involvement in autoimmune pathogenesis has drawn attention to its potential as a therapeutic target for managing autoimmune disorders effectively. 27-OHC, an oxysterol derived from cholesterol, has emerged as a key player in modulating immune responses and inflammatory processes. It exerts its effects through various mechanisms, including activation of nuclear receptors, interaction with immune cells, and modulation of neuroinflammation. Additionally, 27-OHC has been implicated in the dysregulation of lipid metabolism, neurotoxicity, and blood-brain barrier (BBB) disruption. Understanding the intricate interplay between 27-OHC and autoimmune diseases, particularly neurodegenerative disorders, holds promise for developing targeted therapeutic strategies. Additionally, emerging evidence suggests that 27-OHC may interact with specific receptors and transcription factors, thus influencing gene expression and cellular processes in autoimmune disorders. Understanding the intricate mechanisms by which 27-OHC influences immune dysregulation and tissue damage in autoimmune diseases is crucial for developing targeted therapeutic interventions. Further investigations into the molecular pathways and signaling networks involving 27-OHC are warranted to unravel its full potential as a therapeutic target in autoimmune diseases, thereby offering new avenues for disease intervention and management.


Assuntos
Hidroxicolesteróis , Oxisteróis , Humanos , Hidroxicolesteróis/metabolismo , Colesterol , Fatores de Transcrição
20.
J Biol Chem ; 299(8): 105035, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442234

RESUMO

Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Citocromo P-450 CYP1B1 , Pregnenolona , Humanos , Encéfalo/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Hidroxicolesteróis/metabolismo , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Pregnenolona/biossíntese , RNA Interferente Pequeno/metabolismo , Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...